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Ongoing research
• Nuclear Parton Distribution
Functions and evolution equations

• Heavy-flavour production
• Fragmentation Functions
• Ultra-peripheral collisions
• Pythia Monte-Carlo event generator
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Collinear factorization

Factorize long- and short-distance physics

dσAB→h+X

dpTη
=

∫ dz
z dx1dx2 f Ai (x1, µfact) f Bj (x2, µfact)

dσij→k+X

dpTη
Dh
k(z, µfrag) +O(1/Q2)

• f Ai (x, µfact): Describe the partonic content of colliding hadron, determined in
global analysis applying DGLAP equations

• dσij→k+X

dpTη
: Partonic coefficent functions, calculated in perturbative QCD

• Dh
k(z, µfrag): Parton-to-hadron fragmentation functions, determined in global

analysis applying DGLAP equations

DGLAP evolution equations for PDFs
∂fi(x,Q2)

∂log(Q2)
=

αs(Q2)

2π
∑
j

∫ 1

x

dz
z Pij(z) fj(x/z,Q2)
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Nuclear parton distribution functions (nPDFs)

Factorize initial-state nuclear effects
• Parametrize nuclear modification at the
initial scale Q2

0 = O(mc)

f p/Ai (x,Q2
0) = R A

i (x,Q
2
0) fi(x,Q2

0)

• Fit parameters in R A
i (x,Q

2
0) using

experimental data
Contributions to several analyses
• EPPS21 [Eskola, Paakkinen, Paukkunen, Salgado;

EPJC 82 (2022) 5, 413]

• TUJU21 [Helenius, Walt, Vogelsang; PRD 105 (2022) 9, 9]

• nCTEQ15 [Duwentäster et. al.; PRD 105 (2022) 11, 114043]
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Non-linear evolution in proton PDFs

Include recombination effects to DGLAP
[Pit Duwentäster, Vadim Guzey]

• Old GLR does not conserve momentum
• Energy-conserving gluon recombination
terms Pgg→g

i and Pgg→qq̄
i available

[Zhu and Ruan NPB 559 (1999) 378–392]

• Combine with linear DGLAP terms
• Compare evolution with the linear one for
CJ15 proton PDFs

• R parameter related to proton size
• Aim: Global fit including HERA data
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DGLAP and BK evolution

Compare two evolution equations
[Armesto, Lappi, Mäntysaari, Paukkunen, Mirja Tevio;
Phys.Rev.D 105 (2022) 11, 114017]

• Match the structure functions F2 and FL at
x,Q2 region where both applicable

• Evolve with DGLAP and BK and see where
they differ

Relative difference =
FBK2 −FDGLAPRew2

FBK2
• Differences pronounced in nuclear case

Ongoing work to study evolution in a physical
basis
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Heavy-flavour production

Two well-defined limits
• Fixed-flavour number scheme valid at low pT
• Massless scheme at high pT

Generalized-mass-variable-flavour-number
scheme (GMVFNS)
• Combines the regions, applicable at any pT
• SACOT-mT scheme with kinematic constraints
[Helenius, Paukkunen; JHEP 05 (2018) 196]

• Applied also to p+Pb collisions to constrain
nPDFs [Eskola, Helenius, Paakkinen, Paukkunen;
JHEP 05 (2020) 037]

• And to double-heavy flavour production
[Helenius, Paukkunen; PLB 800 (2020) 135084]
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Heavy-flavour decays

Leptons from heavy-flavour decays
• Experimentally decay leptons can be
identfied from displaced vertex

• Theoretically involves convolution of
heavy-flavour spectra with “decay function”

Decays with PYTHIA [Alex Tolvanen, MSc thesis]

• Sample heavy-meson kinematics from
SACOT-mT cross section

• Feed particle to PYTHIA to select decay
channel and sample kinematics

• Pick decay leptons and form differential
cross section
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Heavy-meson fragmentation functions (FFs)

• Similarly as PDFs, also FFs require
non-perturbative input to be fitted to data

• Only few works for heavy-flavour FFs, we
have applied KKKS08

New heavy-flavour FF analysis
[Manuel Epele]

• Apply LEP, BELLE and other e+e− data
• Carefully address radiative corrections
• Hessian error analysis to quantify the
uncertainty propagation

• Good description of the
applied D±∗ data
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Ultra-peripheral collisions (UPCs)

• Collisions with large impact parameter
⇒ No hadronic interactions

• Photons emitted by the charged beam
particle may interact

Equivalent photon approximation (EPA)
[Sami Yrjänheikki, MSc thesis]

• Allows to factorize photon flux from the
hard-process cross section

• Applied to exclusive dilepton production in
p+p

• Comparison with (different) EPA and full
calculation
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Exclusive heavy-meson production

NLO calculation for J/Ψ production in
ultra-perihperal Pb+Pb collisions
[Eskola, Flett, Guzey, Löytäinen, Paukkunen;
PRC 106 (2022) 3, 035202]

• First pQCD-based calculation at
NLO for exclusive J/Ψ in UPCs

• Sensitive to nPDFs at small-x
• Large scale uncertainty
• Applied also to O+O, ratio to
reduce the scale uncertainty
[Eskola, Flett, Guzey, Löytäinen,
Paukkunen; arXiv:2210.16048 [hep-ph]]
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Inclusive dijet production in UPCs
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• Another novel process potentially
sensitive to nuclear PDFs

• Small-x reach more limited than
with J/Ψ but theoretically cleaner

• Exact potential to be quantified
[Paakkinen, Guzey]

• NLO and LO Pythia in agreement
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Ultra-peripheral heavy-ion collisions with PYTHIA

(Pb → γ)+p: [CMS: Murillo Quijada, QM2022]

Photoproduction and UPCs

• Pythia has a complete setup for photoproduction, can be applied also to UPCs
as well (Pb → γ + p)
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• Multiplicity well described when
including MPIs in γp

Photon-proton (�p) interactions

Agreement between data and simulation

For in �p interactions, Ntrk from the primary vertex with pT > 0.4 GeV and |⌘| < 2.4 is limited to

< 35 as seen at left of the figure. The mean pT of charged particles is smaller in the �p sample

than for hadronic minimum bias pPb (MB) collisions within the same Ntrk range. No evidence for

a long-range near-side ridge-like structure was found for either the �p or MB samples within this

Ntrk range
a
.

a
Paper CMS HIN-18-008 (to be submitted to Phys. Lett. B)
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• Fair agreement also in UPCs
19

• Multiplicities well reproduced
with γp

(Pb → γ)+Pb:[ATLAS: PRC 104, 014903 (2021)]

G. AAD et al. PHYSICAL REVIEW C 104, 014903 (2021)

FIG. 4. Left: N rec
ch distribution in data, corrected for trigger and reconstruction efficiency and normalized per event (black points), compared

with that in DPMJET-III γ + Pb (dot-dashed green histogram), DPMJET-III γ + p (dotted red histogram), and PYTHIA γ + p (dashed blue
histogram). The bottom panel shows the ratios of the MC distributions to the data distributions. Right: "γ #η distribution in data for N rec

ch ! 10
(black points), normalized per event, and compared with that in DPMJET-III γ + Pb (dot-dashed green histogram), PYTHIA γ + p (dashed
blue histogram), peripheral HIJING Pb+Pb (solid magenta histogram), and DPMJET-III γ + p (dotted red histogram).

of the distribution in data is qualitatively similar to that in
DPMJET-III γ + Pb and Pythia γ + p simulation. However,
the distributions in the simulated photonuclear events de-
crease at smaller "γ #η values, while the distribution in data
rises. At low "γ #η, the shape in data is qualitatively similar
to that in peripheral HIJING Pb+Pb events. This comparison
suggests that the trigger-selected events contain a mixture of
peripheral Pb+Pb events and genuine photonuclear events,
with the latter dominant at "γ #η > 2.5. The possible impact
of residual peripheral Pb+Pb events in the set of selected
events is discussed in Sec. VI.

Figure 5 compares the charged-particle pseudorapidity dis-
tribution, dNch/dη, in data and simulation. The left panel
shows the dNch/dη in data, for charged particles with 0.4 <
pT < 5 GeV, for multiple N rec

ch selections in photonuclear
events. The distributions are corrected for tracking efficiency
on a per-track basis, which ranges from 0.7–0.9 depending on
track η and pT. To compare the relative shapes between N rec

ch
selections, the distributions are each normalized to have an in-
tegral of one. In all cases, the pseudorapidity distributions are
strongly asymmetric, peaking at η = −2.5 (the nucleus-going
direction) and then monotonically decreasing until η = +2.5

FIG. 5. Left: Charged-particle pseudorapidity distribution, dNch/dη, in selected N rec
ch ranges. The distributions are normalized to the same

integral and are shown in arbitrary units. Here, positive and negative η denote the photon-going and nucleus-going directions, respectively.
Right: dNch/dη distribution in data for N rec

ch > 10 (black points), normalized per event, and compared with that in DPMJET-III γ + Pb (dot-
dashed green histogram), PYTHIA γ + p (dashed blue histogram), peripheral HIJING Pb+Pb (solid magenta histogram), and DPMJET-III γ + p
(dotted red histogram) with the same reconstruction-level selection as the data. All distributions have been normalized to have the same value
as DPMJET-III γ + Pb at η = 0.

014903-6

• High multiplicities missed with γp
⇒ Multi-nucleon interactions

[Marius Utheim] 12



Hard-processes in p+Pb with ANGANTYR in PYTHIA

[Marius Utheim]
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• Soft QCD: Use MC Glauber to derive impact parameters for n-n collisions
• Hard QCD: Replace smallest impact parameter n-n with a PYTHIA event
⇒ Underlying event structures do not match
• Fixed by reweighting with impact-parameter dependent weight
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Multi-jet merging in DIS with PYTHIA

[Joni Laulainen]
Inclusive Dijet Trijet
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• DIS events with one scattered parton in the final state + parton shower
• Okay for inclusive jets but falls below for di- and trijet
⇒ Need to merge hard-process events with higher parton multiplicities
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